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A n o n p e r t u r b a t i v e  a p p r o a c h  to  m u l t i p h o t o n  exc i ta t ion  and  d i ssoc ia t ion  of 
molecu les  is p r e s e n t e d  in which coupl ing  to  the  c o n t i n u u m  is t r e a t e d  explici t ly.  
T rans i t ions  a m o n g  c o n t i n u u m  levels  a re  no t  m o d e l e d  d i rec t ly ,  bu t  s o m e t h i n g  
of the i r  effect is r e p r e s e n t e d  by  assuming  tha t  the  c o n t i n u u m  p o p u l a t i o n  
dens i ty  is so low as to be  effect ively ze ro  at  all t imes.  Two  tr ial  app l i ca t ions  
are  br ief ly  discussed.  

Key words: M u l t i p h o t o n  exc i ta t ion  - D i s soc ia t ion  - D i s c r e t e - t o - c o n t i n u u m  
coupl ing.  

1. Introduction 

In this  p a p e r  we out l ine  a m e t h o d  for  m o d e l i n g  I R  d i ssoc ia t ion  of molecu les ,  a 
m e t h o d  specif ical ly des igned  to  t r ea t  coupl ing  to  the  d issoc ia t ive  c o n t i n u u m  of 
the  par t i c le  sys tem.  T h e  k ind  of p r o b l e m  we have  in m i n d  is tha t  of a m o l e c u l a r  
sys tem whose  nega t ive  ene rgy  levels  a re  all d i sc re te  and  whose  pos i t ive  levels  
fo rm an u n b o u n d e d  c o n t i n u u m  to which  the  d i sc re te  levels  a re  c oup l e d  by  an 
in tense  laser  field. T h e  d i sc re te  s ta tes  a re  also c oup l e d  to one  ano the r ,  bu t  no t  
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so the continuum levels. We thus do not include final-state interactions; nor do 
we attempt to treat the added complications of intramolecular relaxation and 
conversion processes [1], or predissociation via coupling to other electronic states 
[2, 3]. For the present we keep our attention focused on how the field may 
dissociate a molecule for which the only path to breakup is excitation to positive 
energy levels on a single electronic surface. 

In the next section we describe the theory. Following that, we briefly discuss 
some aspects relating to the scheme's applicability. 

2. Theory 

To represent the effect of the field we use the familiar semiclassical expression 
for the interaction. Thus 

/~r(t) =/-~r0 + 2 V cos (~ot +cho) (1) 

is a t ime-dependent  Hamiltonian composed of the field-free particle operator  
n o  and interaction V cos (~ot + 4~o), where 

v = ~ �9 80  (2) 

is the scalar product of the electric dipole moment  /2 with the field strength 
vector/~o. The Schroedinger equation to be solved is then written in dimension- 
less form as 

- -~ ~t,= (t~ + 2 v  cos 4,)q', (3) 

where 

= ~ot +,~o, (4) 

=Ero/~O,, (s) 

v = WhoJ, (6) 

and w is the angular frequency of the field. 

The solution W is expressed as a combination of all particle states: 

oO 

�9 =~]n)fn(dp)+fo dele)f(e,~b). (7) 

It is the ~b-evolution of the discrete-level coefficients {f.} that we wish to follow. 

Projecting Eq. (3) onto the various particle states yields 

i O~Tf,(c~) = e ~ ,  (~b)+2 cos ~b E v,,,~,f,,(e}) 
o~  r t '  

r  

+2 cos ~b | de (n[v]e)f(e, cb),  (discrete); (8a) 
3o 
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3 
i ~  f(e, 6)  = el(e, r  2 cos 6 E., (e Iv In ')f., )f~, (4)) 

oo 

+2  cos 6 Io de' 6),  (continuum). (8b) 

Since the effect of coupling among continuum levels on the bound-state 
coefficients is assumed negligible, we approximate by dropping the integral term 
from the right of Eq. (8b). This leaves 

3 
i ~-~ fCe, 6)= ef(e, r  cos r ~ (e lv[n')f,,,(O ), 

which integrates to yield 

f(e' & ) :  -2i ~ (elvln') I6 de' e -i~('~-6', cos&'fw(4)'). 
o 

(9) 

This is zero at r =4)o, so that the correct boundary condition is observed. 
Therefore we can substitute directly for f(e, 4)) in Eq. (8a) to find 

�9 0 
t ~ f ~ ( r  = e.L(r +2  cos r Z,,, v,.~,f~,(r 

q5 

- 4i cos 6 ~ I6o dO' u,.e (& - ~b ') cos r 'fw (& '), (lO) 

where [4] 

co 

u.w(O)=fo de (nlv[e>e-'~~ ( l l a )  

i ] .,~. { l l 'x } \ "~ ~ - - ieO l ~ntvutv)vln'l-Z, v,,e yr,,. 
l 

( l l b )  

The operator t~(0) is 

a(0)__-e -in~ (12) 

Before we can hope to solve Eq. (10) we must have an integrated expression to 
replace the integral. This in turn requires that functional forms be available to 
represent u,,, and f,, in the integrand. The first of these we replace by its 0 = 0 
value: 

lJ.n' ( 0 )  "-~ l J n n '  ~ l J n n '  ( 0 )  = (V 2) n n '  -- ~"  l ) n l ~ l n ' .  
l 

(13) 

This is the value of un,, when the continuum is empty, indicating that the effect 
of this approximation will be to maximize the rate of loss from the discrete levels. 
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With this approximation we find for Eq. (10) 

0 
i 7 - rL(4 , )  = e ~ . ( 4 , ) +  2 cos 4, E v~ 

4~ t '  

- 4 i  cos4, E u,,, l a4,' cos 4,'f,,(4,'). (14) 
n '  a,b o 

In matrix notation this becomes 

if(4,) = W ( 4 , ) f ( 4 , ) - 4 i  cos 4, vl(4,, 4,0), (15) 

where the dot signifies differentiation with respect to 4, and where 

W(4,) = g + 2 v  cos 4,, ~,, ,  =6,, ,e, ,;  (16) 
,b 

t "  

I(4,, 4,0) = | d4,' cos 4,'f(4,'). (17) 
a,b o 

We then express the integral as the sum of two parts, writing 

t(4,, 4'0) = t(4,, 4,~)+t(4,~, 4,0). (18) 

The second quantity on the right is known. The first is solved under the assump- 
tion that 4, -4,~ is a small quantity: 

,h 
t '  

1(4,, 4,~) ~- l d4,' cos 4,'f(4,') 
J4~ 

.._ 4, -4,0 [cos 4,/(4,) +cos 4,d(4,~)]. (19) 
2 

Substituting into Eq. (15) and using Eqs. (18) and (19) yields, upon multiplying 
through by - i ,  

= - i A ( 4 , ) f -  2 cos 4, v[(4, -4,~) cos 4,,df~ + 2I~]. (20) 

Left unlabeled, [ denotes f(4,), while f~ = f(4,~) and l~ = 1(4,~, 4,). The array A(4,) 
is given by 

A(4,) = W(4 , ) -  2i(4, -4,~) cos 2 4,v. (21) 

Eq. (20) is the working equation of the method, forming the basis for a propaga- 
tion which we carry out using a modification of the Magnus technique [5-7]. 
Given/~ and I~ we compute f as 

I; 4,~) cos 4,J~ f(4,) = e-i^J~-'~~ _ 2 d4,' cos 4,' e - i ^  "~-~"~ v[(4,' - +2I~].  

(22) 

Using this result in Eqs. (19) and (18) then yields 1(4,) which, together with 
f(4,), becomes the input for the next step. For As in Eq. (22) we may use 

A~ = A[�89 +4,~)], (23) 

provided the interval 4, -4,~ be small enough. 
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In actual practice the matrix A~ is diagonalized before exponentiating, so as to 
ease the task of evaluating e-i^~176 The diagonal exponential  is then "undiagonal-  
ized" to render  the matrix consistent with the original basis set. In the present  
instance we see that diagonalization will not be so easy as in the usual case 
where the A~-array  is Hermit ian;  however,  it is still a t ime-saving step. 

The result of doing a calculation such as outlined here will be a set of probabili ty 
amplitudes {f~(~b)} whose squares in absolute value will give the probabili ty that 
a discrete particle state In> is occupied at t ime t: 

P .  (t) = If. (& : wt + &o)[2. (24) 

Fur thermore ,  because of coupling to the continuum, there will be loss f rom the 
discrete spectrum so that ~ .  P .  (t) < 1 in general. The rate of such loss, moni tored 
as a function of time, will yield useful information as to the way in which 
probabil i ty flows out of the resolvable spectrum of a molecular system exposed 
to intense laser radiation. 

3. Discussion 

We have outlined a method for modeling mult iphoton excitation and dissociation 
of molecules which is designed to treat  cases in which only one electronic surface 
is involved, or more specifically, cases in which all potential  energy surfaces have 
a common asymptotic value which we take to be the zero reference of our energy 
scale. Generalizat ion to include refinements such as radiationless decay and 
other intramolecular processes should in principle be no more  difficult with this 
method than with any other. Our  reason for working out the present  approach 
is to include coupling to the continuum in a fundamental ly rigorous way. We 
have made approximations that to some extent vitiate the formal  exactness of 
the theory as originally summarized in Eqs. (10-12), but that seems to be the 
price we must pay for a useable method.  

The theory should also be useable in situations where a quasicontinuum replaces 
the low-energy port ion of the continuum, provided the density of states is 
sufficiently great that no one part  of the quasicontinuum becomes significantly 
populated.  We note that bott le-necking in the quasicontinuum is not likely to 
Occur .  

Finally, we point out that only those discrete levels lying within a few photons 
of the continuum need be coupled to it. Thus the dimensionality of the matrix 
v will be much smaller than v. This should ease the task of applying the theory 
when a large number  of discrete levels are involved. 

We have tried the method out on two Morse oscillators, one chosen to mimic 
the ground electronic surface of HC1 and the other modified as we shall describe 
shortly. The particle Hamil tonian is then 

h 2 0 2 
I2I~ 2m Or 2 ~-D[e 2e~r-ro.~_2e e~r-ro.~], (25) 
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where D is the well depth, r is the vibrational coordinate, req is the equilibrium 
point, and 13 is the fall-off parameter.  The HC1 model surface supports 24 
vibrational states when constructed using data from Herzberg [8]. A dipole 
moment  function Ix (r), r the internuclear separation, can be written in the form 

3 

Ix (r) = Y~ a~r n e - ~ r  (26) 
rt=O 

with the constants y and {an} determined by fitting this function and its first four 
derivatives, evaluated at the equilibrium separation req, to the tabulated data of 
Kaiser [9]. Coupling among the vibrational levels occurs through the interaction 
of the imposed field and this dipole moment.  A number of candidate fields have 
been employed, all of very high intensity (~1014 W/cm2), but even with the 
optimal choice, significant excitation is seen only to v = 5 or 6; beyond that, the 
maximum observed probability falls off exponentially with increasing v so that 
virtually no occupation occurs for states above v = 10. Dissociation after 100 
cycles of the field is less than 10 .8 . 

This result is not particularly surprising. It is well known that diatomic molecules 
do not dissociate in the presence of single-mode I R  fields. The usual explanation 
is that the density of states does not increase sufficiently to overcome the detuning 
that results from the anharmonicity of the well. Including rotational degrees of 
f reedom might change this result to some extent, but on the evidence we should 
not expect the change to be significant [10]. 

The second Morse oscillator (D = .  121, 13 = ten = x/2, all in atomic units) exhibits 
just eleven bound states. The dipole moment  operator  Ix (r) and the field intensity 
are the same as before. In this case dissociation does occur; after 100 oscillations 
of the field (whose quantum is resonant with the v = 1 ~ v = 2 transition) we see 
a probability of 0.024 for loss to the continuum. Because the model is so artificial 
we do not describe its evolution in any detail, but one interesting phenomenon 
is worth noting. The dissociation occurs in steps. There  is no loss until higher-lying 
levels (v-~8 to 11) become populated. Dissociation then proceeds until these 
levels become depopulated once more as a result of stimulated absorption into 
the continuum together with stimulated emission back to lower levels. This 
behavior repeats cyclically in the current model, at least for the relatively short 
periods of time considered here. We should expect eventual scrambling of the 
excitation-deexcitation pattern, but over short times the system behaves quite 
regularly, leading to the observed steplike pattern of dissociation as a function 
of time. 

Future research in two directions is indicated. First, the present method ought 
to be applied to more complicated particle systems so as to ascertain its potential 
for treating problems of current interest, such as the multiphoton dissociation 
o f  SF6 for example. Second, the method needs to be modified so as to more 
nearly reflect the true t ime-dependence of the matrix v(0). An important effect 
that we wish to examine in this regard is the possibility of stimulated emission 
from the continuum back to discrete levels. When we replaced v(0) by v = v(0), 
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we essentialty said that the continuum never became populated. This approxima- 
tion also needs to be tested. We should, however, note our belief that the 
approximation is likely to be accurate in that it represents (in a highly imprecise 
way) the possibility of rapid transitions to high-lying continuum levels, thus 
adjusting somewhat for errors introduced when continuum-continuum interac- 
tions are neglected. 
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